最小的K个数(手写大顶堆和用优先级队列比较)

题目描述

输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。

题目链接:https://www.nowcoder.com/practice/6a296eb82cf844ca8539b57c23e6e9bf?tpId=13&tqId=11182&tPage=2&rp=2&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

 

第一种方法,用优先级队列构造出最大堆,然后不断更新最大堆,每次只和堆顶比,如果比堆顶小,删除堆顶,新数入堆。但是这里利用集合并不好,手写最大堆会比这个更优,因为在超过k个数的时候,优先级队列需要poll和offer(或者add)操作,poll会下沉恢复堆有序源码思路:将数组最后一个元素赋给堆顶,size-1,然后从堆顶往下一个个比较,相当于把堆顶往下沉,然后到合适位置,堆顶下沉只会赋值一次,并不是下沉的时候比较交换),offer会上升恢复堆有序源码思路:从堆底往上一个个比较,相当于把堆底往上浮,堆底上浮只会赋值一次到合适位置,并不是上浮的时候比较交换),而如果手写堆实现的话,仅仅只需要将堆顶元素替换再下沉,就没有了上升恢复堆有序的环节如果是100W个数找最小的5个数,假如情况比较糟糕,每次都需要更新最大堆堆顶,如果那么使用PriorityQueue将要多做999995(99W近100W)次上升恢复堆有序的操作。可以看一下PriorityQueue的源码就知道。

并且最后迭代的时候要么foreach要么iterator,本质就是iterator迭代。为什么不用for循环去list.add(queue.poll())?虽然也可以出结果,但是queue的poll方法会有下沉恢复堆有序操作,而iterator不会,仅仅是遍历数组。最后返回的ArrayList是满足要求的数字但不一定有序(因为数组堆不一定有序),返回这个ArrayList,最后判题系统应该会排序后来判断结果对不对。

PS:优先级队列的传入比较器参数new Comparator是需要在上浮和下沉的时候将回调我们重写的compare方法来构建出最大最小堆。

        PriorityQueue<Integer> queue = new PriorityQueue<Integer>(new Comparator<Integer>(){
            public int compare(Integer i1, Integer i2) {
                return i2.compareTo(i1);
            }
        });

这里如果i1.compareTo(i2)那么就是构建的小顶堆(其实默认也是小顶堆),如果i2.compareTo(i1)就是大顶堆。

AC代码:

import java.util.ArrayList;
import java.util.Comparator;
import java.util.Iterator;
import java.util.PriorityQueue;
public class Solution {
    public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        // [4,5,1,6,2,7,3,8],0
        if (input == null || k > input.length || k <= 0)    return list;
        PriorityQueue<Integer> queue = new PriorityQueue<Integer>(new Comparator<Integer>(){
            public int compare(Integer i1, Integer i2) {
                return i2.compareTo(i1);
            }
        });
        int len = input.length;
        for (int i = 0; i < len; ++i) {
            if (queue.size() != k) {
                queue.offer(input[i]);
            } else if (queue.peek() > input[i]) {
                queue.poll();
                queue.offer(input[i]);
            }
        }
        Iterator<Integer> it = queue.iterator();
        while (it.hasNext()) {
            list.add(it.next());
        }
        return list;
    }
} 

 

第二种方法:手写最大堆实现(绝对比PriorityQueue优)

AC代码:

import java.util.ArrayList;

public class Solution {
    public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        // [4,5,1,6,2,7,3,8],0
        if (input == null || k > input.length || k <= 0)
            return list;
        int[] target = new int[k];
        int len = input.length;
        for (int i = 0; i < len; ++i) {
            if (i < k) {
                target[i] = input[i];
                heapInsertSiftUp(target, i, target[i]);
            } else {
                if (target[0] > input[i]) { // 最大堆下沉
                    target[0] = input[i];
                    siftDown(target, 0, target[0]);
                    // 相比优先级队列,这里不会offer操作(里面有上浮),少了一步上浮调整,效率高了不止一丁点
                }
            }
        }
        for (int i = 0; i < k; ++i) {
            list.add(target[i]);
        }
        return list;
    }

    private void heapInsertSiftUp(int[] target, int index, int x) {
        while (index > 0) {
            int parent = (index - 1) >>> 1;
            if (greater(x, target[parent])) {
                target[index] = target[parent]; // 往下拉,避免直接上浮覆盖前面的值
                index = parent;
            } else {
                break;
            }
        }
        target[index] = x;
    }

    private boolean greater(int i, int j) {
        return i > j;
    }

    private void siftDown(int[] target, int k, int x) {
        int half = target.length >>> 1;
        while (k < half) {
            int child = (k << 1) + 1; // 默认先左孩子
            int big = target[child];
            int right = child + 1;
            if (right < target.length && greater(target[right], big)) {
                big = target[right];
                child = right; // 可以直接一步big = target[child = right];
            }
            if (greater(x, big)) // x比子节点中的最大值还大,已经是大顶堆了
                break; // 往上拉不动了,准备退出把最初堆顶的结点赋值到上一个结点
            target[k] = big; // 往上拉
            k = child;
        }
        target[k] = x;
    }
}

 

相关文章另一篇topK问题:https://blog.csdn.net/qq_34115899/article/details/82930835

==============Talk is cheap, show me the code===============

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页